1717 - Christmas Party
28 Jan 2021 — Tags: None
Click to show code.
using namespace std;
using ll = long long;
using ii = pair<int, int>;
using vi = vector<int>;
template <long long M, typename T = long long>
class NumMod
{
static_assert(std::is_integral<T>::value, "Integral required.");
using NM = NumMod<M, T>;
T x;
public:
static const ll MOD = M;
NumMod(T x) : x(x) {}
NumMod() : x(0) {}
NumMod(NM const &y) : x(y.v()) {}
explicit operator T() const { return x; }
T v(void) const { return (this->x + M) % M; }
NM & operator=(NM const &y)
{
this->x = y.v();
return *this;
}
NM &operator=(T const &y) { return this->operator=(NM(y)); }
NM &operator+=(NM const &y) { return this->operator=(operator+(y)); }
NM &operator-=(NM const &y) { return this->operator=(operator-(y)); }
NM &operator*=(NM const &y) { return this->operator=(operator*(y)); }
NM operator+(NM const &y) const { return (v() + y.v()) % M; }
NM operator+(T const &y) const { return this->operator+(NM(y)); }
NM operator-(NM const &y) const { return (v() - y.v()) % M; }
NM operator-(T const &y) const { return this->operator-(NM(y)); }
NM operator*(NM const &y) const { return (v() * y.v()) % M; }
NM operator*(T const &y) const { return this->operator*(NM(y)); }
NM operator/(NM const &y) const { return this->operator*(inverse(y)); }
NM inverse(NM const &y) const { return binpow(y, M - 2); }
};
int const NMAX = 2e6 + 11;
int const MOD = 1e9 + 7;
using NM = NumMod<MOD, ll>;
NM fact[NMAX];
void precompute_fact(void)
{
fact[0] = 1;
for (int i = 1; i < NMAX; ++i)
fact[i] = fact[i - 1] * i;
}
template <typename T>
T binpow(T a, ll b)
{
T res = 1;
while (b > 0)
{
if (b & 1)
res = res * a;
a *= a;
b >>= 1;
}
return res;
}
ll C(ll n, ll k)
{
if (k > n)
return 1;
return ll(fact[n] / (fact[n - k] * fact[k]));
}
int main(void)
{
ios::sync_with_stdio(false), cin.tie(NULL);
ll n;
cin >> n;
vector<NM> dp(n + 1, 0);
dp[0] = 1;
dp[1] = 0;
for (int i = 2; i <= n; ++i)
dp[i] = (dp[i - 1] + dp[i - 2]) * (i - 1);
cout << ll(dp[n]) << endl;
return 0;
}