abc143_d - Triangles
24 Dec 2020 — Tags: sorting,binary_search — URLIf we have the length of the sticks, $l$, sorted non-decreasingly, we can count all possible triangles by listing two sides $a$, and $b$ and finding the position, $c$, where the length starts to become degenerate.
Remember that $a + b > c$ and $a \leq b \leq c$.
This can be done with binary search or two-pointers.
Time complexity: $O(n \log{n})$
Memory complexity: $O(n)$
Click to show code.
using namespace std;
using ll = long long;
using ii = pair<int, int>;
using vi = vector<int>;
int main(void)
{
ios::sync_with_stdio(false), cin.tie(NULL);
int n;
cin >> n;
vi l(n);
for (auto &li : l)
cin >> li;
sort(begin(l), end(l));
int ans = 0;
for (int i = 0; i < n - 2; ++i)
{
for (int j = i + 1; j < n - 1; ++j)
{
auto it = lower_bound(begin(l) + j + 1, end(l), l[i] + l[j]);
int k = distance(begin(l), it);
if (k - 1 > j)
ans += k - j - 1;
}
}
cout << ans << endl;
return 0;
}