1462C - Unique Number
15 Dec 2020 — Tags: greedy — URLFirst note that the maximum sum of digits that can be made is $45$, we’ll assume that $x$ is less than that from now on. Note that with the previous assumption it is always possible to sum $x$.
To build our desired number $y$, our greedy strategy will then be to fit the biggest possible digits to the least significant digits of $y$. This will reduce the total amount of digits used and at the same time reserve the smaller digits for the most significant digits of $y$.
Time complexity: $O(1)$
Memory complexity: $O(1)$
Click to show code.
using namespace std;
using ll = long long;
using ii = pair<int, int>;
using vi = vector<int>;
template <typename InputIterator,
typename T = typename iterator_traits<InputIterator>::value_type>
void read_n(InputIterator it, int n)
{
copy_n(istream_iterator<T>(cin), n, it);
}
template <typename InputIterator,
typename T = typename iterator_traits<InputIterator>::value_type>
void write(InputIterator first, InputIterator last, const char *delim = "\n")
{
copy(first, last, ostream_iterator<T>(cout, delim));
}
int solve(int x)
{
if (x > 45)
return -1;
int ans = 0, n = 1;
for (int d = 9; d >= 1; --d)
{
if (x - d >= 0)
{
x -= d;
ans += n * d;
n *= 10;
}
}
return ans;
}
int main(void)
{
ios::sync_with_stdio(false), cin.tie(NULL);
int t;
cin >> t;
while (t--)
{
int x;
cin >> x;
cout << solve(x) << endl;
}
return 0;
}